MEAN VALUE THEOREM

S.R. Joshi
8, Karmayog, Tarak Colony, Opp. to Ram-krishna Ashram, Beed bye pass Road, Aurangabad - 431 517, M. S., India.
E-mail: pranav.coatings@gmail.com
and
M.R. Gosavi,
Dept. of Mathematics, Maharashtra Mahavidyalaya, Nilanga, 413521, Dist. Latur, M. S., India.
E-mail: mrgosavi11@yahoo.com

Abstract

The main purpose of this article is to elaborate and illustrate the proofs of the mean value theorems for complex valued functions given in [?] in the form of all inequality, and then demonstrate their uses in some applications, including l’Hospital’s rule. This is achieved by using the concept of full covers and Cousin’s Lemma [?].

1 INTRODUCTION

During the last five decades or so, several authors including L.C. Barret(1969), M.P. Diazin [?], S. Reich [?], V.K. Kulkarni [?], etc... have been attracted towards the study of different aspects of the mean value theorem (MVT) of the elementary calculus. They pondered how to make its proof simple and elegant [?], how to generalize it [?], how to use it in proofs of other theorems [? , ?], and how to prove its converse [? , ?].

In this paper the authors have given the detail proofs of the three versions of MVT for complex valued functions in the form of an inequality occurred in [?], and their usefulness in applications, particularly in proving l’Hospital’s rule. Examples are also given to support the theorems proved. The results proved mainly depend on the concept of a full cover of a closed interval and Cousin’s lemma [? , ?].
2 PRELIMINARIES

In this section we give some useful definitions required in proving the results of Sections 3 and 4. We also state the classical Cauchy’s MVT and Cousin’s Lemma [?] used in proving the results of the next section.

Let \(\mathbb{R} \) and \(C \) stand for the sets of real and complex numbers respectively. Let \(I = [a, b] \) be a closed interval in \(\mathbb{R} \). If \(f \) is a real valued or complex valued function defined on \(I \), then we denote the length \((b - a)\) of \(I \) and the difference \(f(b) - f(a) \) by \(|I|\) and \(f(I) \) respectively.

Definition 2.1 A family \(FC \) of closed subintervals of \(I \) is said to be a full cover of \(I \) if there exists a function \(\delta(x) > 0 \) for \(x \in I \), and for any subinterval \([u, v]\) of \(I \), we have

\[
v - u < \delta(x) \implies [u, v] \in FC \quad (2.1)
\]

where \(u < x < v \).

Definition 2.2 A set \(A \) in \(\mathbb{R} \) is said to be null if given \(\epsilon > 0 \), there exist open intervals \(I_n \) such that

\[
A \subset \bigcup_{n=1}^{\infty} I_n, \text{ whenever } \sum_{j=1}^{\infty} |I_n| < \epsilon.
\]

For example any countable subset of \(\mathbb{R} \) is null. Also the Cantor set is null.

Definition 2.3 Let \(A \subset \mathbb{R} \). We say that a property \(P \) holds nearly everywhere in \(A \) if it holds in \(A \setminus E \) (the set of all points in \(A \) which are not in \(E \)), where \(E \) is a countable subset of \(A \).

Definition 2.4 A function \(f : I \to C \) is said to be absolutely continuous on \(I \), if for every \(\epsilon > 0 \), there exists \(\eta > 0 \), such that for any finite family \(\{I_k : k = 1, 2, 3, \ldots, n\} \) of non-overlapping subintervals of \(I \),

\[
\sum_{k=1}^{n} |I_k| < \eta \implies \sum_{k=1}^{n} |f(I_k)| < \epsilon. \quad (2.2)
\]

Definition 2.5 Let \(A \subset \mathbb{R} \). We say that a property \(P \) holds almost everywhere (in short a.e.) in \(A \) if it holds in \(A \setminus E \), where \(E \) is a null subset of \(A \).

We now state two results without proof. One is the classical MVT for two real valued functions and the second is Cousin’s Lemma [?].

Theorem 2.1 If \(f, g : I \to \mathbb{R} \) are continuous and differentiable on \((a, b)\), with \(g'(x) \neq 0 \) for all \(x \in (a, b) \), then there exists a point \(c \in (a, b) \) such that

\[
\frac{f(I)}{g(I)} = \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}. \quad (2.3)
\]
Remarks: The assumption \(g'(x) \neq 0 \) for all \(x \in (a, b) \) implies that \(g' \) does not change sign in \((a, b) \). That is \(g \) is either increasing or decreasing in \((a, b) \). Note that there is no method to find the value of \(c \) satisfying (2.3).

Theorem 2.2 (Cousin’s Lemma)?. Let \(FC \) be a full cover for \(I = [a, b] \). Then each closed subinterval \(J \) of \(I \) has a partition whose subintervals lie in \(FC \).

3 THREE VERSIONS OF MEAN VALUE THEOREM

In this section we state and prove three versions of a mean value theorem for complex valued functions defined on \(I \), in the form of an inequality [?]. The author of [?] called these theorems as Mean, Meaner and Meanest value theorems respectively. Here the meaner the theorem, the stronger it is.

Consider the following assumptions related to two functions \(f : I \to C \), and \(g : I \to \mathbb{R} \).

(A1) \(g : I \to \mathbb{R} \) is increasing.

(A2) \(f \) and \(g \) satisfy the inequality \(|f'(x)| \leq g'(x) \) everywhere in \((a, b) \) while

\[
\lim_{x \to a^+} f(x) = f(a) \quad \text{and} \quad \lim_{x \to b^-} f(x) = f(b). \quad (3.1)
\]

(A3) \(f \) and \(g \) satisfy the inequality \(|f'(x)| \leq g'(x) \) nearly everywhere in \(I \), while \(f \) is continuous in \(I \).

(A4) \(f \) and \(g \) satisfy the inequality \(|f'(x)| \leq g'(x) \) a.e. in \(I \), while \(f \) is absolutely continuous on \(I \).

Theorem 3.1 Let the assumptions (A1) and (A2) hold. Then

\[|f(J)| \leq g(J) \quad (3.2) \]

for every closed interval \(J \) of \(I = [a, b] \).

Proof: The proof of this theorem follows directly from the next theorem, by taking the countable set \(D \) as \(\{a, b\} \).

Theorem 3.2 Let the assumptions (A1) and (A3) hold. Then the inequality (3.2) holds.

Proof: Without loss of generality, we may take \(J = I = [a, b] \). Let \(|f'(t)| \leq g'(t) \) for all \(t \in A\setminus E \), where \(E = \{S_1, S_2, S_3, \ldots \} \) is a countable subset of \(J \). Let \(\epsilon > 0 \) be given and let \(F = \bigcup_{n=0}^{\infty} C_n \) be an infinite union of families of closed subintervals of \(J \), such that,
(i) C_0 is the family of all closed subintervals K of J such that $|f(K)| \leq g(K) + \epsilon |K|$,

(ii) $C_n (n \geq 1)$ is a family of all closed subintervals K of J such that $s_n \in K$ and

$$|f(K)| \leq \frac{\epsilon}{2^{n+1}}$$

(3.3)

We now show that F is a full cover for J. If $x \in J \setminus D$, then by differentiability of f and g there exists $\delta(x) > 0$ such that for any closed subinterval $K = [u, v]$ of J with $x \in [u, v]$ and $(v - u) < \delta(x)$, we have

$$\left| \frac{f(v) - f(u)}{v - u} - f'(x) \right| \leq \frac{\epsilon}{2},$$

(3.4)

and

$$\left| \frac{g(v) - g(u)}{v - u} - g'(x) \right| \leq \frac{\epsilon}{2}.$$

(3.5)

From these relations and the assumption (A3), we get

$$|f(v) - f(u)| \leq |f'(x)||(v - u)| + \epsilon(v - u)/2$$

$$\leq g'(x)(v - u) + \epsilon(v - u)/2$$

$$\leq g(v) - g(u) + \epsilon(V - u).$$

i.e.

$$|f(K)| \leq g(K) + \epsilon(K).$$

(3.6)

Hence by (i) we conclude that $K \in C_0$. If $x \in D$, then for some $n, x = s_n$. Hence by continuity of f, there exists $\delta(s_n)$, such that for any $K = [u, v]$ in J, satisfying, $S_n \in [u, v]$, and $(v - u) < \delta(s_n)$, we have

$$|f(v) - f(u)| \leq \frac{\epsilon}{2^{n+1}}.$$

(3.7)

This shows that $K \in C_n$. Thus F is a full cover of J. Hence by Cousin’s Lemma, there exists a partition say $P = \{t_0, t_1, t_2, \ldots, t_p\}$ of J such that $K_j \in F$, where $K_j = [t_{j-1}, t_j]$, for $j = 1, 2, 3, \ldots, p$. We observe that each C_n with $n > 0$, contains at most two of the points of K_j. Hence

$$|f(J)| = \sum_{j=1}^{p} f(K_j) \leq \sum_{j=1}^{p} |f(K_j)|$$

(3.8)
The right hand side of (3.8) can be split up into two sums, depending on whether $K_j \in C_0$ or $K_j \in C_n (n > 0)$. Hence from (3.8) we get

$$|f(J)| \leq \sum_{K_j \in C_0} |f(K_j)| + \sum_{n=1}^{\infty} \sum_{K_j \in C_n} |f(K_j)|$$

Further using (3.6), (3.7) and increasing nature of g we further get

$$|f(J)| \leq \sum_{j=1}^{p} (g(K_j) + \epsilon|K_j|) + 2 \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} \leq g(J) + (|J| + 1)\epsilon.$$

But ϵ is arbitrary. Hence $|f(J)| \leq g(J)$, and the proof is complete.

The following examples will illustrate the theorems 3.1 and 3.2.

Example 3.1 Let $f(x) = \sin x + i \cos x$ and $g(x) = x^3/3$ be two functions defined on $I = [1, n]$, where n is any positive integer. Then it is easy to verify that the conditions (A1) and (A2) hold on I. Hence the inequality (3.2) holds for every closed subinterval J of I. For example if $J = [\pi/2, \pi]$, then $|f(J)| = \sqrt{2}$ and $g(J) = 7\pi^3/24$. Clearly $|f(J)| \leq g(J)$. Note that if we take I as $[0, \pi/2]$, then the condition (A1) does not hold on I, and hence the conclusion (3.2) does not hold on every subinterval J of I. Similarly it can be verified that the functions $f(x) = 1 - \cos x$ and $g(x) = x^2/2$ defined on $I = [0, \pi/2]$ support Theorem 3.1.

Example 3.2 Consider the following functions f and g defined on $[0,2]$.

$$f(x) = \begin{cases} 1/2 & 0 \leq x < 1, \\ x/2 & 1 \leq x < 3/2, \\ 3/2 - x/2 & 3/2 \leq x \leq 2, \end{cases}$$

and

$$g(x) = \begin{cases} x/2 & 0 \leq x < 1, \\ x & 1 \leq x < 3/2, \\ 3/2 & 3/2 \leq x \leq 2. \end{cases}$$

It can be observed that g is an increasing function on I, $f'(x), g'(x)$ exist on $I \setminus E$, where $E = \{1, 3/2\}$ and $|f'(x)| \leq g'(x)$ for $x \in I \setminus E$. This shows that the conditions (A1) and (A3) of Theorem 3.2 are satisfied. It is easy to verify that the conclusion (3.2) of Theorem 3.2 holds for all subintervals J of $[0,2]$.

Theorem 3.3 Let the assumptions (A1) and (A4) hold. Then the relation (3.2) holds true for every subinterval J of I.
Proof: As in the proof of Theorem 3.2 we take \(J = I = [a, b] \). Let \(|f'(t)| \leq g'(t) \) a.e. That is \(|f'(t)| \leq g'(t) \), for \(t \in J \setminus E \) where \(E \) is a null subset of \(J \). Let \(\epsilon > 0 \) be given. Since \(f \) is absolutely continuous on \(J \), there exists a positive number \(\eta \), such that

\[
\sum_{k=1}^{n} |I_k| < \eta \implies \sum_{k=1}^{n} |f(I_k)| < \epsilon
\]

(3.9)

for every finite non-overlapping family \(\{I_k\} \) of subintervals of \(J \). Since \(E \) is a null subset of \(J \), there exists a sequence of open intervals \(I_n \), such that

\[
E \subset \bigcup_{n=1}^{\infty} |I_n| \text{ and } \sum_{n=1}^{\infty} |I_n| < \eta.
\]

As in Theorem 3.2 let \(F \) be an infinite union of families of closed subintervals of \(J \), satisfying the conditions (i) and (ii) mentioned in the proof of Theorem 3.2. Here also we show that \(F \) is a full cover for \(J \). For this purpose let \(x \in J \). There are two cases.

Case (i) : \(x \in J \setminus E \). In this case we have by following the argument as in the proof of Theorem 3.2, \(K \in C_0 \), whenever \(K = [u, v] \) is a subinterval of \(J \).

Case (ii) : Let \(x \in E \). Then there exists \(\delta(x) > 0 \) such that for any \(K = [u, v] \subset J \), satisfying \(x \in [u, v] \) and \((v - u) < \delta(x)\), we have \(K \subset I_n \) for some \(n > 0 \). Thus \(F \) is a full cover for \(J \). By Cousin’s Lemma there exists a partition \(P = \{t_0, t_1, t_2, \ldots, t_p\} \) of \(J \), for which each subinterval \(K_j = [t_{j-1}, t_j] \) belongs to \(F \). Observe that all the \(K_j \) contained in \(I_n \) have total length not exceeding \(|I_n| \). Hence

\[
\sum_{n=1}^{\infty} \sum_{K_j \subset I_n} |f(K_j)| < \epsilon.
\]

(3.10)

This is so because the intervals \(K_j \) form a finite family of subintervals of \(J \) whose total length does not exceed \(\eta \). Now

\[
|f(J)| = \left| \sum_{j=1}^{p} f(K_j) \right| \leq \sum_{j=1}^{p} |f(K_j)| = \sum_{K_j \in C_0} |f(K_j)| + \sum_{n=1}^{\infty} \sum_{K_j \in C_n} |f(K_j)|.
\]

Here we have divided the sum \(\sum_{j=1}^{p} |f(K_j)| \) into two sums depending upon whether \(K_j \in C_0 \) or \(K_j \in C_n \). From this relation and using (3.6), (3.10) and positivity of \(g(K_j) \) we finally get

\[
|f(j)| \leq \sum_{K_j \in C_0} (g(K_j) + \epsilon |K_j|) + \sum_{n=1}^{\infty} \sum_{K_j \in C_n} |f(K_j)| \leq \sum_{j=1}^{p} g(K_j) + \epsilon \sum_{j=1}^{p} |K_j| + \epsilon \leq g(J) + (|J| + 1)\epsilon.
\]
Since ϵ is arbitrary, we have $|f(J)| \leq g(J)$, and the proof is complete. The following example supports the above theorem.

Example 3.3 Let $I = [0, 1], A = \{a_n\}$, where $a_n = \frac{1}{2^n}, (n = 1, 2, 3, \ldots)$. Define two functions f and h on I as follows:

$$f(x) = k, \text{ where } k \text{ is any fixed number, real or complex}$$

$$h(x) = \begin{cases} 0 & \text{if } x < \text{ every } a_n \\ \sum_{i=n}^{\infty} & \text{if } x \geq a_n \end{cases}$$

Clearly h is a well defined and bounded function on I; and the range of h is a countable set. It can also be observed that $h(0) = 0, h(1) = 1$ and

$$h(x) = \frac{1}{2^{n-1}} \text{ if } \frac{1}{2^n} \leq x < \frac{1}{2^{n-1}}.$$

For example $h(1/16) = h(1/14) = h(1/15) = 1/8$.

Since $\lim_{x \to a_n^+} h(x) - \lim_{x \to a_n^-} h(x) = an \neq 0$, we conclude that h is discontinuous at each a_n. Hence h is continuous a.e. on I. Now define the function g on I as follows:

$$g(x) = \int_0^x h(t)dt, \ x \in I$$

Since h is bounded on I and continuous a.e. on I, g is well defined on I. Further g is increasing on I, because h is a nonnegative on I. By fundamental theorem of calculus we have $g'(x) = h(x)$. Hence $g'(x)$ also exists a.e. on I. Since f is clearly absolutely continuous on I, we see that the conditions (A_1) and (A_4) of Theorem 3.3 are satisfied. Hence the conclusion (3.2) holds. Direct verification of (3.2) is also easy since $|f'(x)| = 0$ and $g'(x) \geq 0$.

4 APPLICATIONS

Though the theorems proved in the previous section are in the form of an inequality, they can be used to prove the following known results.

Theorem 4.1 If $f : I \to C$ satisfies $f'(x) = 0$ subject to one of the assumptions ($A2$), ($A3$) or ($A4$), then $f(x)$ is constant on I.

The proof of this theorem follows from Theorems 3.1,3.2 or 3.3, by taking $g(x) = 0$ on I. Note that in order to prove the constancy of f on I, under the condition that $f'(x) = 0$ a.e. on I, we have to assume that f is absolutely continuous function on I.

In the following theorem we are assuming that f is also real valued.
Theorem 4.2 If \(f : I \to \mathbb{R} \) satisfies \(f'(x) \leq 0 (f' \geq 0) \) subject to one of the assumptions \((A2), (A3)\) or \((A4)\), then \(f \) is decreasing (increasing) in \(I \).

Proof: The function \(g(x) = 0 \) on \(I \) is increasing on \(I \) and if \([u, v] \subset I\), then by the conclusion of theorems 3.1 to 3.3, we have \(f([u, v]) = f(u) - f(v) \leq g([u, v]) = 0 \). Hence \(f \) is decreasing. The conclusion that \(f \) is increasing under the condition \(f' \geq 0 \) follows similarly by replacing \(f \) by \(-f\).

Lastly we prove a very well known and useful result known as l’Hospital’s Rule \([?]\) for finding the limit of \(\frac{f(x)}{g(x)} \) when \(x \to a \) under the condition that both \(f(x) \) and \(g(x) \) tend to either 0 or \(\infty \).

Theorem 4.3 Let \(f \) and \(g \) be two real valued functions defined on a domain \(X \) in \(\mathbb{R} \), containing a point \(a \). Let there exist an open interval \(I \) containing the point \(a \), such that the derivatives \(f' \) and \(g' \) exist and \(g'(x) \neq 0 \) in \(I, x \neq a \). Let

\[
\lim_{x \to a} \frac{f'(x)}{g'(x)} = l. \tag{4.1}
\]

If either

\[
\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x), \tag{4.2}
\]

or \(\lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x). \tag{4.3} \)

Then

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = l. \tag{4.4}
\]

Proof: We prove the result for one sided limit from the left. Let \(\epsilon > 0 \) be given. By (4.1) there exists \(\delta > 0 \) such that \(J = (a - \delta, a) \subset I \) and

\[
\left| \frac{f'(x)}{g'(x)} - l \right| \leq \epsilon, a - \delta < x < a. \tag{4.5}
\]

Since \(g'(x) \neq 0 \) in \(J \) we may assume that \(g'(x) > 0 \) in \(J \). Hence \(g(x) \) is increasing in \(J \). Therefore by (4.5) we have

\[
(l - \epsilon)g'(x) \leq f'(x) \leq (l + \epsilon)g'(x), \text{ for } x \in J.
\]

Let \(F(x) = f(x) - (l + \epsilon)g(x) \) and \(G(x) = f(x) - (l - \epsilon)g(x) - f(x) \) for \(x \in J \). Then clearly \(F'(x) \leq 0 \) and \(G'(x) \leq 0 \) on \(J \). By Theorem 4.2, both \(F \) and \(G \) are decreasing on \(J \). Choose a point \(u < x \). Hence we have \(F(x) \leq F(u) \) and \(G(x) \leq G(u) \). That is

\[
f(x) - (l + \epsilon)g(x) \leq (l + \epsilon)g(u)
\]
and

\[(l - \epsilon)g(x) - f(x) \leq (l - \epsilon)g(u) - f(u).\]

Hence

\[(l - \epsilon)[g(x) - g(u)] \leq f(x) - f(u) \leq (l + \epsilon)[g(x) - g(u)].\]

Since \(g\) is strictly increasing, we have

\[
\left| \frac{f(x) - f(u)}{g(x) - g(u)} - l \right| \leq \epsilon
\]

(4.6)

As a first case let the relation (4.3) hold. Define

\[h(x) = \frac{1 - f(u)/f(x)}{1 - g(u)/g(x)}\]

for all \(x\) close to \(a\).

Then \(\lim_{x \to a^-} h(x) = 1\). Hence there exists \(\delta_1 \in (0, a - u)\) such that \(h(x) \geq 1/2\) and \(|l - h(x)| \geq \epsilon\), whenever \(a - \delta_1 < x < a\). Let \(u < a - \delta_1 < x < a\). Note that

\[
\frac{f(x)}{g(x)} h(x) = \frac{f(x) - f(u)}{g(x) - g(u)}, \quad 2h(x) \geq 1 \quad \text{and} \quad |1 - h(x)| < \epsilon,
\]

Hence by (4.6) we have,

\[
\left| \frac{f(x)}{g(x)} - l \right| = \left| \left(\frac{f(x)}{g(x)} - l \right) \times 1 \right|
\]

\[
\leq 2 \left| \frac{f(x)}{g(x)} h(x) - lh(x) \right|
\]

\[
= 2 \left| \frac{f(x) - f(u)}{g(x) - g(u)} - l + l \cdot h(x) \right|
\]

\[
\leq 2 \left| \frac{f(x) - f(u)}{g(x) - g(u)} - l \right| + 2|l||1 - h(x)|
\]

\[
< 2\epsilon + 2|l|\epsilon = 2(1 + |l|)\epsilon.
\]

Since \(\epsilon\) is arbitrary, we conclude that \(\lim_{x \to a^-} \frac{f(x)}{g(x)} = l\). Similarly we can show that \(\lim_{x \to a^+} \frac{f(x)}{g(x)} = l\). The case (4.2) can be dealt similarly.
References

